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ABSTRACT

Automatic classification of targets viewed by radar is
complicated by variations in target aspect relative to the radar

line-of-sight (RLOS). This report investigates the possibility
of reducing the effects of target aspect by using the scale
invariance of the Mellin transform. The properties of the

Mellin transform are develwped in analogy with the Fourier trans-

form and illustrated using simple test functions and digitally

implemented transforms. Simulated radar ship profiles demonstrate

that a change in aspect is not equivalent to a change in target
scale for realistic targets, however. Automatic classification

results, for both simulated and actual radar ship profiles,
confirm that using a combination Fourier-Mellin transform for

feature selection appears at best comparable to the results
obtained using the Fourier transform alone for feature selection..

Accession For

N4TIS CRA&I

uiicianounaed F
Justification

Distributiton/

Avsilalhi!ty Codes

iAvail and/or
Diist Special

4A4S•''-• - •.• "A-•:•, Z" Z ... *• -- - -•• . •• -=' -:•-'"-"<- _u•.... .. .



=

TABLE OF CONTENTS

I INTRODUCTION
2 MELLIN TRANSFORM 5

3 MELLIN TRANSFORM IMPLEMENTATION 9

4 TRANSFORMS OF TEST FUNCTIONS 15

5 TRANSFORMS OF SIMULATED SHIP PROFILES 31

6 AUTOMATIC SHIP CLASSIFICATION 39

7 SUMMARY AND CONCLUSIONS 45

REFERENCES 47

GLOSSARY 48

vI

I



LIST OF ILLUSTRATIONS

1. The pattern recognition process 2

2. Magnitudes of Mellin transforms of rectangle test functions. 16

3. Fourier and Mellin. transforms of a rectangle test function. 18

4. Fourier-Mellin transforms of qaussian test functions. 22

5. Fourier and Mellin transforms of sampled gaussian test 23
functions illustrating the effects of shift and scale
operations.

6. Effects produced by rectangular low pass filters. 29

7. Fourier and Fourier-Mellin transforms of simulated ship 33

profiles shown at three aspect angles, a.

8. Effects of c8nstant radar range resolution shown for an 36
aspect of 60 .

9. The effects of using constant radar range resolution and 38
a three-dimensional distribution of point scatterers shown
for an aspect of 60 .

10. Linear classifier results for simulated ship profiles. 41

11. Quadratic classifier results for simulated ship profiles. 42

12. Linear classifier results for measured ship profiles. 43

13. Quadratic classifier results for measured ship profiles. 44

LIST OF TABLES

1 Space Bandwidths Required to Evaluate the Mellin Transform 14

2 Parseval's Theorem for Fourier and Mellin Transforms 27

vi



1. INTRODUCTION

Identification of targets is a significant problem facing

the defense community. Current weapan systems are capable of p
engaging targets at ranges far in excess of those as which the A

targets may be identified. Amelioration of the problem through

the application of long range sensors and the development of H
identification techniques is being actively pursued.

This report is concerned with automatic classification of

ship targets sensed by radar. In particular, it is one attempt i
to address the difficulties encountered when the relative aspect

is varied between a ship and the radar line-of-sight (RLOS).

This is done by considering a scale invariant Mellin transform

applied as a feature selector for automatic ship classification.

Figure 1 shows schematically the general pattern recognition

process. Data provided by sensors is preferentially selected

or otherwise manipulated by a feature selection technique. The ]
selected features are then combined with other knowledge and

used to make a decision as to the most replesentative class. The A
class decision is the identification desired.

Radar cross section (RCS) vs range profiles of ships have
been provided by the Naval Weapons Center, China Lake, California. i

Averaged profiles are available at approximately one degree aspect I
increments. This data is divided into training and testing sets. 11

The training set is used to train a classifier while the testing

set tests its performance. Both data subsets pass through the
same feature selection process.

Automatic classification of a target into one of several

possible classes is complicated by allowing the viewing aspect
to vary. This is due to induced variations in the perception

of that target. For one dimensional targets, changing the

viewing aspect is equivalent to scaling of the length by the

cosine of the aspect angle. Three-dimensional targets behave

Im
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Fig. 1. The pattern recognition process
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in a more complicated manner since typically only a two dimensional

projection is available. In this case, besides being scaled,

portions of a target may appear or disappear.

A possible solution to this problem is to construct a large

number of projections of training targets at many different
aspects. Classification may then be performed by comparing a
test target with all projections. The class of the projection

with the "closest" match could be taken as the class to which

the test target is assigned.

An alternative solution, at least for one dimensional targets,

is to perform a transformation of a target to a new space which

is independent of viewing aspect. Target classes must remain

distinct, of course. Classification should now be considerably

easier since aspect complications are removed. The transformation

would be most useful if no a priori knowledge of aspect angle is

required.

This second approach is investigated in this report using the

mathematical operation known as the Mellin transform. The trans-

fcrm has t';c dcsirablc properLy' that its magnitude is invariant

under scaling of the function which is being transformed. This

is analagous to the invariance of the Fourier transform under

translation. The scale invariance of the Mellin transform shouldr completely remove aspect angle dependencc for o, Jinrc.,ziornal

targets with multiple scattering and interference excluded.

However, only approximate scale invariance can be expected for

three dimensional targets.

A combination Fourier and Mellin transform can also be

considered. This Fourier-Mellin transform should be invariant

under both shift and scale operations. The utility of the Fourier-

Mellin transform as a feature selector is judged by comparing itsIclassification performance with that of a classifier using only

the Fourier transform for feature selection.IA
3A
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In the following sections the Mellin transform and some of

its properties are presented. In all cases comparisons with the
Fourier transform are made. Transforms of simple test functions

are presented next to illustrate the operation of the transforms.

Fourier-Mellin transforms of simulated radar ship profiles are
then investigated. These profiles emphasize that for realistic

targets a change in aspect is not equivalent to a change in

scale. Finally automatic classification results are compared

for two cases using either the Fourier-Mellin transform or the
Fourier transform for feature selection. Both simulated and

actual radar ship profiles are used.

Throughout the report emphasis is not on the formal mathe-

matical properties of the Mellin transform. Instead the emphasis

is on digital implementation and insight into the physical
operation of the transform.

4
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2. MELLIN TRANSFORM

Mellin transforms are discussed in many books dealing with

mathematical transforms!.' 2 }The usual definition is

00
M(s) = f Ix)x S-dx(i

f

where s=0+ix. Here, the real part of s, c, is chosen to be a

constant whose value is partially determined by the function

f(x) such that the integral converges. The imaginary part of

s, T, is the transform variable.

The scale invariance of the Mellin transform is easily

shown by considering a function f(ax). Then

S1 -s
M(s,a) } f(ax)x dx a M(s) (2)

In a similar way the Fourier transform

F(M) = ff(x)e- i2xdx (3)

can be shown to be shift or translation invariant by considering
f (x-a)

co

F(v,a) =f f(x-a~e-i Vdx e e-2vF( (4)

Clearly, for the Fourier transform under translation

I F v a l = F ( v ) I ( 5 )A

while for the Mellin transform under scale

IM(s,a)l = a-' IM(s)l (6)

5
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In general there is a multiplicative factor relating the two

Mellin transforms. When comparing two Mellin transforms, this I
factor is easily removed by normalization. On the other hand,

the multiplicative factor may be used directly to find the

relative scale between the two functions. Consider now the

Fourier transform of a function f(ax-b).

(,N, a,b) f (ax-b) dx (7)

Letting y=ax-b this becomes

V 00 V

F(vab) 1 - i 2 abf i -i2 n Ydy

V (8)
= ie 2 ib F()

lal a

Finding the absolute magnitude

IF(v a, b)j - FIF(a) j (9)

Note that in addition to the multiplicative factor I/a, the

frequency, v, has also been scaled by I/a. The Mellin transform

should be capable of removing the scale dependence.

Thus consider the Mellin transform of Eq. (9) with a>o

MF(sa) f1 F(Y)I ldv = a MF(S) (10)

0

IM F(s,a)I = a°0 1 IMF(s)il (11)

This Fourier-Mellin transform is independent of the position b of

f(ax-b) (translation invariant) ..nd except for a multiplicative

factor is independent of the scale a of f (scale invariant).

Indeed, if o can be chosen equal to 1, the multiplicative factor

also disappears.

6



Unfortunately, each time the magnitude of one of the trans-

forms is taken, all phase information present in that transform

is lost. An important question is then whetler sufficient

information remains from the two successive transforms to make

this Fourier-Mellin transform useful.

relation to the Fourier transform and the inverse Mellin transform.

Equation (1) can be rewritten as

M(s) = f(x)X e dx (12)

This form is similar to the Fourier transform in Eq. (3). The

argument of the phase factor is now a nonlinear functio-. of x,

however. Also notice that the range of integration for the

Mellin transform is only over non-negative x.

The Mellin transform can be converted to a Fourier transform

by making a change of variable

x=ey (13)

Then

M(s) =f f(eY)eCy e iCy dy (14)
-00

Cyy
This is a Fourier transform of the distorted function f(ey)!

weighted by eay. Equation (14) is particularly important in

implementing the Mellin transform. This is discussed more fully

in the next section.

Further insight into the effects produced by tne application

of Fourier or Mellin transforms can be gained by considering the

inverse transforms.

.7J



F- (x) = j g(v)e i2rvxd (15)

0+.00
M (x) = g(s) x" d (16)

2Ti

G-i-

The utility of these transform pairs becomes apparent when

the effects of filtering in the transform variable (frequency) i

domain are investigated. A resultant filtered function produced

by a forward transform, multiplication by a filter function, and

an inverse transform back to the space domain may be easily

compared to the original, unfiltered function. Note that in this
procedure the transform phase information is not discarded. This

implies that in the case of the combined Fourier-Mellin transform

as defined above it is not possible to return to the original

input function. This is due to removal of the Fourier phase

information before the Mellin transform is performed.

Finally, a function and its Fourier transform satisfy

Parseval's theorem.

SIf(x) 12 dx =f IF(v) 12 dv (17)

A simila. relation may be found for the Mellin transform.

f If x) 12 x2a 1 dx = JM(v) 2• dV = 2Trv (18)

These relations may be useful when transform coefficients are

used as components of feature vectors in pattern recognition

techniques. Since the dimension of the feature vectors may be

much less than the number of transform coefficients available,

Eq. (17) or (18) may give a relative approximation to the amount

of information retained in the feature vectors.

8
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3. MELLIN TRANSFORM IMPLEMENTATION

The Mellin transform can be implemented in several ways.

The ability of lenses to perform Fourier transforms implies that

the Mellin transform can also be performed optically by making

use of Eq. (14). The requirement for processors of this type

is to sample the input function at spacings x=ey. Scale

invariant optical Mellin transforms have been sucessfully performed

(see Refs. (3} and (4}).

Mellin transforms can also be performed digitally. Suppose

that a function f(x) is defined by values taken at equal incre-

ments, Ax.

f(x) = If(j Ax) j = 0,1,...,N-1I (19I

Then Eq. (1) becomes

N-1

M(s) E f(jx) (jAx)S IAx (20)
j=0

This form of the Mellin transform suffers from computation

restrictions similar to those found in calculating the "slow"

Fourier transform.

A better approach is to use the Fourier equivalent of the

Mellin transform, Eq. (14). This integral is evaluated by summing

contributions at equal increments in y. Rewriting Eq. (13)

x-_AxeJ6Y (21)

Equation (14) becomes

M(T = •x)+iTy
M) X) Ay f(A xejýY)eJaAYei9TAy (22)

=---

9
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Two questions reist now be addressed. What upper limit L

should be taken for j? What frequency values, T, should be

calculated? For the first question assume that the N values of

f(x) adequately sample that function. Then, since nonuniform

sampling is used to evaluate Eq. (22), choose the largest increment

in y to be less than or equal to Ax. This should ensure that

f is adequately sampled in the "y" space. The largest increment

occurs for maximum j so with

(N-1)Ax = Axe(L-)•y (23)

the largest increment becomes

Ax = Axe(L-1)Ay -Axe (L-2Any (24) 1

Combining these equations

L = 1 + ln(N-l)/ln ((N-I)/(N-2)) (25)

Ay = ln((N-l)/N-2)) (26)

For later convenience choose L instead to be

L=2n (27)

where n is chosen sufficiently large to satisfy Eq. (25).

Equation (26) then becomes I

Ay - ln (N-l) (28)

The second question can be answured by rewriting Eq. (22)
in the form of a discrete Fourier transform. To do this the j

argument of the phase factor must be altered to

jTAy = 2ujk/L (29)

10
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Thus

T= 2nk/LLy IkI< L-1 (30)

are the desired frequencies with increment

AT = 27/LUy (31)

The Mellin transform from Eq. (22) can now be written as the

discrete Fourier transform

o+ikAT s f(Pxejy)ej AYei2Trjk/L (32)
M(k) =(Ax) (L-)

When j is zero in Eq. (21), x becomes 6x. The sum in Eq. (32)

can then be broken into two parts corresponding to j;0 and J>0.

The second part requires sampling f(x) for Ax<x<(N-1)Ax. Since

equal increments in y do not correspond to values jAx, f(x) must A
be interpolated. The interpolation can be performed by fitting

a parabola to three successive values of f(jAx). The desired

value f(x) is found by evaluating the parabola at x. A sequence

of numbers is thus formed which can be Fourier transformed using A

the Fast Fourier Transform (FFT) algorithm with its associated

computational advantage.

The first part of the sum in Eq. (32) may be evaluated in a

similar manner. Here, however, the interpolation is performed

for O<x<x. The only data values available are f(0) and f(6x).

The final desired transform is the Fourier-Mellin transform.

This uses the magnitude of the Fourier transform as the input -
A

to a Mellin transform. The magnitude of the Fourier transform

is real and symmetric about zero, however. Therefore, again use

a parabola as *.he interpolating function but force it to be

symmetric about zero. To do this use the three successive values

(-Ax,f(bx)), (0,f(0)), (6x,f(Cx)). By using a single interpolating

A



function over the entire range, the sum over negative j in

Eq. (32) may be computed analytically and merely evaluated at

the appropriate frequencies T. The Mellin transform in Eq. (32)
.is tiien the sum of the two parts described above.

An alternative method of approximating the Mellin transform

is given in Ref. {5). They also divide Eq. (32) into two parts
and treat the second part essentially the same as described
above. To evaluate the first part they assume that f(x) can be L
approximated by a constant

ii

f(x)=f(C) O<x<Ax (33)

Then from the definition 13

Ml(S)t=f(O) I xS-dx=f(O) (34)
1 f -S

0

Ax1

where M1 is the contribution from the sum over negative j.
(6, 71Casasent and Psaltis discuss the space bandwidth

requirements to implement the Mellin transform. They consider
an input function defined over O<x<Xmax. Using Eq. (13) this is

equivalent to -o<y<ln(x max). Instead let x min<-x Xmax to avoid
the problems introduced near y=--. Also, assume that x min=kx
and Xmax =NAx where Ax is the sampling increment in x space.

In other words, the first k samples of the input function are
excluded.

To find the resolution or sample increment in y space

__ _ A_ x x = (35)

dx x

The worst case in terms of the required number of samples in y

space is

y - -L- - (36)
Xmax NAx N

12
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A
The required number of y samples (space bandwidth) is then given
by

L=(y -Y amax min

=N[ln(NAx)-ln(kAx)] = Nln(N/k) (37)

Recall that the Mellin transform is to be used with scaled functions

f(ax) where a is the scale factor. The number of samples k that

are effectively exclud~d is proportional to a. Letting kI be the

number of excluded samples when a=l,

k=akI (38) A

The required space bandwidth is then

L=Nln(N/kl)=Nln(aN/k) (39)

with k/N considered to be proportional to the accuracy.

Table 1 lists a few space bandwidths L calculated from

Eq. (39). Also shown are the number of sample points calculated

using Eqs. (25) and (27). The values from Eqs. (25) and (27) are

much larger than those from Eq. (39) for the cases shown. Using
L=4096 and an accuracy k/N=0.01, scale factors of nearly 30

should be possible. Equivalently with a scale of a=3 the accuracy

may be k/N=0.001.

I 1

vI
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TABLE 1
SPACE BANDWIDTHS REQUIRED TO EVALUATE THE MELLIN TRANSFORMI

N k/N a L L LAccuracy Scale (39) (25) (27)
512 1% 2 2713 3185 4096
512 1% 3 2920 3185 4096
512 2% 2 2358 3185 4096
512 2% 3 2566 3185 4096

14
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4. TRANSFORMS OF TEST FUNCTIONS

This section presents examples of Mellin and Fourier-Mellin

transforms of simple test functions. Rectangle and gaussian

functions are chosen to provide better physical understanding of

the transform operation. The test functions are easy to visualize

but yet can be considered as fundamental comoonents of more

complicated functions. The real part of s, a, is chosen equal to

1 for all examples.

First consider the Mellin transform of a rectangle function.

Using 128 sample points, the magnitudes of Mellin transforms are
shown in Fig. 2. Two rectanglcs 3re transformed separately, one

of width 20 sample points and the other of width 60.

f(x) w=20,60 (40)

0 max

Figure 2 includes both analytic and digitally implemented trans-

forms for both rectangle sizes. The analytic transform is

performed over the range Xmin_<X_<Xmax to correspond to the digital

implementation, Eq. (32), and to avoid the difficulties near x=0.
xf max 2V

M(iV;)~ :a f(x)X1 v: v]dxifV (41)
SXmin

Using Eqs. (25) and (27), L=1024,

xmi Ax exp(-(L-l)Ay) (42)

and
= ( l+i2)+i2 /(+i2) (43)

15
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Fig. 2. Magnitudes of Mellen transforms of rectangle test
functions, one three times wider than the other. Note the close
agreement between the analytic and discrete transforms. The
rectangle widths are evident in the factor of 3 or 4.77 dB
difference in transform magnitudes.
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Figure 2 shows the close agreement between the two transform

methods. Also shown is the effect of the factor of three scaling

between the two test functions, evident here as a constant addi-

tive factor due to the logarithmic scale. This is consistent with

Eq. (6) where a=1/3 and o=l and illustrates the scale invariance

of the Mellin transform.

There are small deviations between the analytic and digital

results. This is to be expected since the discrete implementation

in Eq. (32) is an approximation. Indeed, the approximation is
-1

equivalent to the rectangle rule for numerically evaluating an

integral. There are higher order methods available for approxi-

mating integrals, but Eq. (32) is convenient and relatively

efficient since the FFT algorithm is applicable.

Figure 3 shows Fourier and Mellin transforms of rectangle

functions. Magnitudes of the transforms are plotted on linear

scales. In Fig. 3a the left edge of the rectangle is located at

the origin. Figure 3b shows the rectangle shifted to the right 4

but with the same width. The magnitude of the Fourier transform,

being shift invariant, is identical to that in Fig. 3a in agree-

ment with Eq. (5). The magnitude of the Mellin transform is

clearly different for the two cases illustrating that the Mellin

transform is not shift invariant. Figure 3c shows transforms of

a rectangle three times as wide. The transform magnitudes are

all divided by three. The Mellin transform is now identical to

that in Fig. 3a again illustrating scale invariance. The Fourier

transform is compressed in frequency by a factor of three con-

sistent with Eq. (9) and is not scale invariant. A

Next consider transforms of gaussian shaped test functions.

This is again a case where the Mellin transform can be performed

analytically.

17
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Fourier
Transform
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0 Frequency

_ Mellin
Transform
Magnitude

0 Frequency

Fig. 3. Fourier and Mellin transforms of a rectangle test
function illustrating how the magnitude of the Fourier transform
is shift invariant while the magnitude of the Mellin transform
is not. Similarly the Mellin transform magnitude is scale
invariant while the Fourier transform magnitude is not.
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(b)
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Fig. 3 (CONT'D)
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2.
M(s) = e-x xs ldx -r(s) Re s>o (44)

0 A

With s=li2•v -1

M(V) ~r~iTr V) (45)

M() /cosh (46)

2I
Figure 4 shows the results of analytic and discrete Fourier-

Mellin transforms of two gaussian test functions, one four times
wider than the other. Analytic results are independent of width
consistent with the Mellin scale invariance. The hyperbolic

cosine in Eq. (46) causes the transform magnitudes to fall
exponentially with frequency.

The constant increment used to sample the test functions
causes the difference between the analytic and discrete calcu-

lations. In the discrete case the functions are approximated
as series of rectangles. The Mellin transform is then a complex

s,iperposition of Mellin transforms of these rectangles. The

larger number of finite samples from the wider test function is

equivalent to using a smaller increment for the narrower function
and leads to more accurate results.

Gaussi-an functions are also used in Fig. 5. Here the location

and width of the gaussian are varied. The magnitudes of the
Fourier and Fourier-Mellin transforms are shown along with the

gaussian function. The Fourier transform is invariant to shift

but not to scaling of the function width. Figures 5a and 5b
illustrate this behavior as well ;.s the combined shift and scale
invariance (,f the Fourier-Mellin transform. The Fourier-Mellin
transform is the same as the width=4 transform in Fig. 4. The

kink in the transform near -40 dB is caused by not allowing the
magnitude to be less than -40 dB for plotting. Figure 5b is

scaled by 2 relative to Fig. 5a.

21
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Fig. 4. Fourier-Mellin transforms of qaussian test functions.
The two discrete transforms use the same sample increment and
number of samples, but one test function is 4 times wider than
the other. An analytic transform which is independent of the
functiozL width is shown for comparison.
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Fig. 5. Fourier and Fourier-Mellin transforms of sampled
gaussian test functions illustrating the effects of shift
and scale operations. Note also the effects produced by
undersampling of the test function.
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Figure 5c is scaled by a factor of 5.76. This makes the

test function narrower than the width=l in Fig. 4. As expected

the effectively lower sampling rate results in less accurate

transform values. Also notice that in this case the frequency

bandwidth of the input function exceeds the folding frequency

of the Fourier transform. The Mellin transform is performed on

the Fourier spectrum as shown. Since this spectrum is not a

scaled version of the two previous spectra due to the finite value

at the highest frequency, the Mellin transform values should not

be identical.

The last series of calculations was also used to check

Parseval's theorem between a function and its transform, Eqs. (17)

and (18). The results are summarized in Table 2. Equation (17)

for the Fourier transform holds for all cases. The approximation

inherent in Eq. (32) is again evident for the Mellin transform

in Eq. (18). An analytic calculation shows that both sides of

Eq. (18) should equal 7.9577. The discrepancy between this value

and those found using the discrete transform led to interpolat.i.ng

the Fourier frequency spectrum. This is done by appending zeros

to the input function and performing a lengthened transform. The

interpolation decreases the size of the frequency increment

while increasing the number of increments. This should increase

the accuracy attained in evaluating the Mellin transform using

Eq. (32). Increasing the number of samples taken from the input

function would be better, but is not always possible due to

hardware constraints.

The energy of the weighted Fourier transform, the left-hand

side (LHS) of Eq. (18), may be made to closely approach the

analytic value. Summing the energy of the Mellin transform only

over the first 65 coefficients led to consistently higher values

for the right-hand side (RHS) of Eq. (18). Since only a portion

of the total nuuber of Mellin coefficients was summed, the
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TABLE 2

PARSEVAL'S THEOREM FOR FOURIER AND MELLIN TRANSFORMS

Scale Fourier Mellin Transform Eq. (18)
Factor Transform

Eq. (17) LHS* RHS* RHS/LHS

1.00 249.97 7.9531 8.0815 1.0161

1.31 191.49 7.9550 8.0816 1.0159
2.00 124.99 7.9566 8.0817 1.0157

5.76 43.50 8.0178 8.1389 1.0151

Interpolate to ½ the sample increment

1.00 249.97 7.9566 8.0198 1.0079

1.31 191.49 7.9571 8.0198 1.0079
2.00 124.99 7.9575 8.0198 1.0078

5.76 43.50 8.0174 8.0768 1.0074

Interpolate to ¼ the sample increment

1.00 249.97 7.9575 7.9888 1.0039

1.31 191.49 7.9576 7.9888 1.0039

2.00 124.99 7.9577 7.9888 1.0035

*LHS = Left-Hand Side

RHS = Right-Hand Side
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resulting energy should be less than the LHS of Eq. (18). The

difference is apparently due to the approximation in Eq. (32).

This is unlike the Fourier case where Eq. (17) can be proven

to hold exactly in the discrete case as well. The last column

in Table 2 lists the ratio RHS/LHS for Eq. (18). This ratio is

seen to approach one as the Fourier transform is smoothed by

increasing the number of interpolating points. Increasing the

number of Fourier frequency samples through interpolation improves

the accuracy of the discrete Mellin transform of that Fourier
spectrum.

The difficulties described above imply that the relative

energy contributed by the first N Mellin coefficients can only

be determined by first finding the energy of all the coefficients.

This may be computationally expensive for pattern classification

where only a few coefficients may be desired.

Finally in Fig. 6, results of ideal low pass filtering in
the frequency domain are shown.. The top panel shows the input
function. The middle and lower panels show the results of

filtering in the Fourier and Mellin frequency domains, respec-

tively. For both cases a forward transform is performed.

Filtering is done by retaining the first N complex coefficients

and zeroing all higher ones. Finally an inverse transform is

performed to return to the space domain. Note that the phase

information associated with those N coefficients in the frequency

domain is not discarded as it is in performing the Fourier-Mellin

transform. The ringing near the origin in the Mellin results

arises in the inverse Mellin transform and does not affect the

results presented next.

As expected increasing the number of coefficients retained

by the filter increases the fidelity of the resulting space

functions. The fidelity for the Fourier case is independent of

the pc.sition of the rectangle pulse. This is not true for the

Mellin case. Here the fidelity is highest near the origin and
becomes progressively worse for positions away from the origin.

28

r -e_ ,• "" • •L



10 COEFFICIENTS 80 COEFFICIENTS

Function Frto

0 Position 0 Position

FourlarFourWr
Transform Transform

_ _ _ _ _ __t MaW~tuds

0 FrlQ.flV 0 Frefuncy

Transform Trans•.m
Magnitdf - a .p

0 Frequency 0 Frequency

50 COEFFICIENTS 50 COEFFICIENTS

Function Function

o Position' 0 Position

Fourier FourWe
Transform Tranlform

0 Frequency 0 Frequency

/ Transform Transform

Fig.MSatude Magnitude0Frequency 0 Froquency
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depends on the function position.
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These effects are due to fundamental differences in the two

transforms (see Eqs. (3) and (12)). The Fourier transform may be A

thought of as a method to calculate the coefficients required

to expand a function in a sinusoidal (i.e. Fourier) series.

For a constant frequency the argument of the sinusoids increases

linearly with x. Looking at the Mellin transform in the same

manner, one finds that the argument of the corresponding sinusoids

does not increase as x but rather as in x. The fineness of

detail that may be represented in both cases is roughly the

oscillation period of the approximating functions. The constant

period in the Fourier case means that a function may be approxi-

mated equally well regardless of the location of that function.

This is not true in the Mellin case where a particular oscillation

period near the origin can only be reproduced away from the origin

by going to higher transform frequencies to compensate for the

ln x term.

This section has considered applying Fourier, Mellin, and
Fourier-Mellin transforms to relatively simple test functions.

The exercise has provided insight into the physical operation of
the transforms and their differences. The next section will

consider transforms of more complicated functions more similar

to those encountered in the real world.
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5. TRANSFORMS OF SIMULATED SHIP PROFILES

In the previous section transforms of simple test functions

were considered. Now more complicated functions will be used.

These functions are computer generated, amplitude vs slant range,

radar profiles of a simulated ship. The ship consists of 49 unit

amplitude point scatterers located at representative three-

dimensional positions. The radar is assumed to be viewing the

ship at zero elevation angle but differing aspects. With this

geometry the simulated radar profiles are independent of the

height of the scatterers. Various aspects are found by I
effectively rotating the ship abo•ut a vertical axis through its I

center while keeping the radar position fixed. All distances are
slant ranges along the RLOS and are measured relative to the

rotation axis of the ship.

Several assumptions are made when using this model. No

interference between scatterers occurs in the received waveform.

There is no shadowing of scatterers by others, thus 49 point I

scatterers are always visible. Each scatterer is assumed to be

represented by a guassian pulse in the received waveform. Cor-

responding to the unit amplitude of the scatterers, each gaussian

has unit amplitude and all gaussians have identical width.

For a first example consider Fig. 7. Here the model has

been further simplified by assuming that all scatterers lie

along the centerline of the ship. The radar *hen views only a

line of point scatterers. As the viewing aspect between the radar

and the ship is altered, the scatterers remain in the same

positions relative to each other but their absolute locations

are scaled as the cosine of the aspect angle, a. One additional

assumption made is that the width of a point scatterer return is

also scaled by cos a. Then as the perceived length of the ship

shortens, for example, the width of each scatterer return becomes

narrower. This is done to make each profile a scaled version of

the others.
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The top panel of Fig. 7a shows the ship at zero aspect or

along the length. The ship profile is merely the sum of the

returns from all scatterers. The magnitude of the Fourier

transform is plotted in the middle panel on a linear scale. The

bottom panel shows the magnitude of the Fourier-Mellin transform
with the vertical axis in dB.

Figure 7b shows the ship at a 600 aspect. The scatterer

width is 0.5 (cos 600) that at c=0O. The profile is thus a scaled

version of the one at c=0O. The Fourier transform is stretched

relative to a=00 but all of the structure remains. The Fourier-

Mellin transform is nearly identical to the one at a=x0 for the

portion shown. Only minor differences appear near the 60th

coefficient. This Fourier-Mellin transform is nearly invariant

to a scale change of a factor of two.

Figure 7c is at an 800 aspect. Even at a scale factor of

nearly six, the Fourier-Mellin transform begins to deviate from
0the one at a=0 only near the 40th coefficient. Some deviation

is expected since the indivioual gaussian widths are now on the

same order as the sampling increment. The ship profile is more

nearly a series of rectangular pulses than smooth gaussians.

In actual practice the radar return from a point target

does not change as the aspect angle is varied, as is assumed in

Fig. 7. Rather the return from a point target is constant in

width regardless of the aspect angle due to the fixed range

resolution of the radar. The locations of scatterers will scale
with aspect but the scatterer widths will not. Since there is

no longer pure scaling of the target, the Fourier-Mellin transform

should not be invariant. This is seen in Fig. 8 where the

same target is used as in Fig. 7, but the scatterer widths are
not scaled. Comparing Fig. 8 at cL=6 0 with Fig. 7a at a=0°,

the individual scatterers have coalesced producing a profile

different from the one at c =0°. Comparing the Fourier-Mellin

transforms, significant differences appear even in the second

coefficient.
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for an aspect of 600.
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Oornditions actually encountered are generally worse than

those considered so far. Targets are rarely arrays of colinear

point scatterers. Instead the scatterers are distributed in
three dimensions, there is interference between scatterers, and

it is possible to shadow scatterers by others. Figure 9 shows

the same ship profile as before at C=60 but with the scatterers
in three dimensions. There is still no interference or shadowing

allowed. Clearly this profile is not a scaled version of the

profile in Fig. 7a. It is not easy to identify this profile as

being from the same ship. As expected the Fourier-Mellin trans-

forms differ substantially even in the first coefficients.

For more complicated profiles such as those considered here,

the Fourier-Mellin transform as impiemented is scale invariant

to a good approximation so long as the profiles are actually

scaled. When effects typical of more realistic profiles are

included, scaling does not apply and the Fourier-Mellin transforms

of these profiles are not scale invariant.
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6. AUTOMATIC SHIP CLASSIFICATION

It was indicated in the previous section that realistic radar

ship profiles do not merely scale by the cosine of the aspect
angle. Both the Fourier and the Fourier-Mellin transforms there-

Mellin transform is able to achieve at least partial aspect

independence and result in ship classification performance better

than that achieved using the Fourier transform. Using the
magnitude of the Fourier-Mellin transform for feature selection,

simple linear and quandratic classifiers are used on both

simulated and real ship profiles. For comparison the same

classification techniques are repeated using the magnitude of the

Fourier transform as the feature selector. Better classification j
in terms of lower equal error rates* is the criterion used in the I
comparison. 0

Profiles for each degree of aspect (0 to 180 ) are generated

for two ships using the simulated model. The two groups of

profiles are then each divided into a training and a testing

set using alternate profiles. The training sets are used to A

train the linear and quadratic classifiers. The classifiers are

tested using both the training and testing sets independently.
Classification results obtained from the training sets should I
be optimistic. Results obtained from the testing sets are also

probably biased since the training and testing sets are constructed

*The measure of performance is the equal classification
error probability as derived from the operating characteristic
curve. This O-C curve is a plot of the probability of incorrectly
classifying class 1 vs the probability of incorrectly classifying 1
class 2 and is obtained by calculating these probabilities as a
function of a threshold and then varying the threshold. The
point where these probabilities are equal is called the equal
classification error probability and is often used as a sim-
plified measure of the operating characteristic.
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using alternate profiles which are unlikely to be totally

independent. The conditions for the comparison between the

Fourier-Mellin and the Fourier transforms are identical, however,

so the relative performance of each transform should be valid.

Figures 10 and 11 show the classification results for the

two transforms as a function of the number of transform coefficients

used. The linear classifier results in Fig. 10 are very compar-

able. Neither technique is consistently better than the other.

The quadratic classifier results in Fig. 11 are similar. Again

neither technique outperforms the other. The overall classifi-

cation performance on the simulated ship profiles is better

using the quadratic rather than the linear classifier.

Next the same techniques are applied to actual radar ship

profiles. Data from two ships, an FF, and a DD, are used.

Profiles from each ship are available at approximately one degree

aspect increments. One training and two testing sets are formed
for each ship by assigning every third profile to the same set.
Training and testing are repeated as above. The statements

concerning set independence also apply here. Using two testing

sets provides an indication of the spread to be expected in the

classification rates.

Figure 12 shows the linear classifier results. The Fourier

transform performs better by several percent. The spread in

classification rates is smaller for the Fourier transform. Even

larger differences appear using the quadratic classifier as

seen in Fig. 13. The Fourier transform outperforms the Fourier-

Mellin by 5 to 15%.

From these examples it appears that the Fourier-Mellin
transform does not provide significantly improved classification

to justify the additional computational expense required. Indeed,

for the actual ship data, the Fourier-Mellin transform performs

significantly poorer than the Fourier transform alone.40
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7. SUMMARY AND CONCLUSIONS

This report summarizes the investigation into the Mellin

transform and its possible use in pattern classification of radar

ship profiles. The emphasis is on digital implementation and

insight into the physical operation of the transform rather than

its formal mathematical properties. A combination Fourier-
Mellin transform invariant under both shift and scale operations

is studied in the same manner.

A change of variable converts a Mellin into a Fourier

transform but with a distorted input function. For discretely

sampled functions the Fourier transform may be evaluated using II
the FFT algorithm. This requires resampling of the function,

however, at nonuniform intervals via interpolation. Evaluation

of the discrete Fourier transform is equivalent to numerically

approximating an integral with an accuracy related to the

sampling rate of the function.

Mellin and Fourier-Mellin transforms of test functio,.. are

shown. The scale invariance of the Mellin and the shift and

scale invariance of the Fourier-Mellin transform are illustrated.

The scale invariance exhibited is shown to be related to the

sampling rate. Transforms of simulated radar ship profiles are

presented. The profiles emphasize that changes in aspect are not

equivalent to scaling of the target.

Neither Fourier nor Fourier-Mellin transforms are invariant

to target aspect changes. The utility of each transform as a

feature selector in ship classification is investigated by

comparing classification performance. Linear and quadratic

classifiers are applied to both simulated and actual radar ship

profiles. In the cases tested, the Fourier-Mellin classifica-

tion appears to be no better and possibly worse than Fourier

classification.

4

45 A.



The Fourier-Mellin transform can be potentially useful for
problems involvin~g shift and scale operations. Based upon the
cases tested, the transform appears to be no more useful than
the Fourier transform alone for automatic classification of
radar ship profiles.
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GLOSSARY

FFT Fast Fourier 'Transform

LHS Left-Hand Side

RCS Radar Cross Section

RHS Right-Hand Side

RLOS Radar Line-of-Sight
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